Koenker and Basset Error. Koenker and Bassett error of Linear Loss scenarios calculated with Matrix of Scenarios. Used for estimation of Value-at-Risk (i.e., percentile) in Linear Regression.

 

Syntax

kb_err(α, matrix)

short call;

kb_err_name(α, matrix)

call with optional name.

 
Parameters

matrix        is a Matrix of Scenarios:

       

where the header row contains names of variables (except scenario_probability, and scenario_benchmark). Other rows contain numerical data. The scenario_probability, and scenario_benchmark columns are optional.

 

       is a parameter.

 

Output

When function Koenker and Basset Error is used in optimization or calculation problems PSG automatically calculates and includes in the solution report two outputs:

 

pseudo_R2_function_name

coefficient of determination;

contributions(function_name)

normalized increments.

 

Mathematical Definition

Koenker and Basset Error is calculated as follows:

 

,

where

          is Loss Function defined by Matrix of scenarios matrix;

        is parameter;

,  are Partial Moment Penalty functions.  

 is an argument of function.

 

Example

Calculation in Run-File Environment 
Calculation in MATLAB Environment

 

Case Studies with Koenker and Basset Error

Quantile Regression: Style Classification of Portfolio

 

See also

Mean Absolute Error, Mean Absolute Error Normal Independent, Mean Absolute Error Normal Dependent, Mean Square Error, Mean Square Error Normal Independent , Mean Square Error Normal Dependent, Root Mean Squared Error, Root Mean Squared Error Normal Independent, Root Mean Squared Error Normal Dependent, Rockafellar Error