Example: Function call: meansquare_err(matrix_1).
matrix_1:
x1 |
x2 |
x3 |
x4 |
scenario_benchmark |
scenario_probability |
1 7 2 0 |
4 5 8 3 |
8 4 1 4 |
3 6 0 9 |
2 11 6 10 |
0.2 0.2 0.3 0.3 |
MATLAB code (.\Aorda\PSG\MATLAB\Examples\Func_value_meansquare_err.m) for function minimization:
%Define data:
H1 = [1 4 8 3;7 5 4 6;2 8 1 0;0 3 4 9];
c1 = [2;11;6;10];
p1 = [0.2;0.2;0.3;0.3];
%Create the PSG matrix 'matrix_1'(structure containing header and matrix body) and pack it to structure 'iargstruc_arr':
iargstruc_arr(1) = tbpsg_matrix_pack('matrix_1', H1, [], c1, p1);
%Create problem statement:
problem_statement = sprintf('%s\n',...
' minimize',...
' meansquare_err(matrix_1)',...
'');
%Minimize meansquare_err function:
[solution_str, outargstruc_arr] = tbpsg_run(problem_statement, iargstruc_arr);
%Extract value of function from solution report:
val = tbpsg_function_data(solution_str, outargstruc_arr);
%Extract values of output points:
output = tbpsg_point_data(solution_str, outargstruc_arr);
%Display function value:
disp(' ')
disp(sprintf('meansquare_err function value = %g', val(1)));
disp(' ')
disp(sprintf('Pseudo R2 = %g', val(2)));
disp(' ')
disp('Contributions (normed increments) = ');
disp(output{2})
Program output:
meansquare_err function value = 2.06135e-008
Pseudo R2 = 1
Contributions (normed increments) =
0.0297 0.2297 0.1075 0.6331